A layered approach to parallel computing for spatially distributed hydrological modeling

نویسندگان

  • Junzhi Liu
  • A-Xing Zhu
  • Yongbo Liu
  • Tongxin Zhu
  • Cheng-Zhi Qin
چکیده

Distributed hydrological simulations over large watersheds usually require an extensive amount of computation, which necessitates the use of parallel computing. Each type of hydrological model has its own computational characteristics and therefore needs a distinct parallel-computing strategy. In this paper, we focus on one type of hydrological model in which both overland flow routing and channel flow routing are performed sequentially from upstream simulation units to downstream simulation units (referred to as Fully Sequential Dependent Hydrological Models, or FSDHM). There has been little published work on parallel computing for this type of model. In this paper, a layered approach to parallel computing is proposed. This approach divides simulation units into layers according to flow direction. In each layer, there are no upstream or downstream relationships among simulation units. Thus, the calculations on simulation units in the same layer are independent and can be conducted in parallel. A gridbased FSDHM was parallelized with the Open Multi-Processing (OpenMP) library to illustrate the implementation of the proposed approach. Experiments on the performance of this parallel model were conducted on a computer with multi-core Central Processing Units (CPUs) using datasets of different resolutions (30 m, 90 m and 270 m, respectively). The results showed that the parallel performance was higher for simulations with large datasets than with small datasets and the maximum speedup ratio reached 12.49 under 24 threads for the 30 m dataset. Published by Elsevier Ltd. endent Hydrological pproach Zhu ences and Natural Resources nmental Information System,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Water Balance Components Using a Distributed Hydrological Model in Taleghan Watershed

Water changes information in the hydrological system, in time and space, as an environmental issue takes heed of managers and decision makers in watershed management and river engineering, which can be addressed by using spatially distributed modeling. In this study simulation of water balance components in Taleghan mountainous watershed is performed using the spatially distributed hydrological...

متن کامل

A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...

متن کامل

واسنجی و تحلیل عدم‌قطعیت یک مدل نیمه‌توزیعی در یک منطقه ‌نیمه‌خشک

Application of conceptual hydrological models is an important issue in watersheds for researchers, especially in arid and semi-arid regions. The hydrological behaviors are complicated in such watersheds and their calibration is more difficult. In this article, the conceptual and semi-distributed SWAT model is used for a semi-arid Nishabour watershed with 9350 km2 area. Streamflow simulation is ...

متن کامل

شبیه سازی توزیعی مکانی- زمانی رواناب با استفاده از مدل WetSpa در حوزه آبخیز طالقان

In order to assessment and prediction of hydrological processes with inherent complexity, processes changes effects on the nonlinear behavior of watershed system in the past and future and specification of water and soil conservation operation, using indirectly methods such as simulation of watershed processes therewith directly methods is necessary. The objective of this research is evaluation...

متن کامل

Green Energy-aware task scheduling using the DVFS technique in Cloud Computing

Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2014